

35

Volume 4, pp. 35-44

Zhalgasbek Iztaev, Sandugash Mombekova, Kulaysh, Ayhinbay
South-Kazakhstan State University im. M. Auezova

Shymkent, Kazakhstan
e-mail address: san.mom@inbox.ru

ANALYSIS OF SAFETY AND VULNERABILITIES
OF THE LEVELS OF THE INFRASTRUCTURE AND

APPLICATIONS ANDROID

Abstract

In this article, we will focus on analyzing the security

and vulnerabilities of infrastructure and application levels.

Security mechanisms, such as the sandbox and Android

permission systems, exist at the infrastructure level, while

malware scanners protect the application layer. However, there

is room for improvement in both mechanisms. For example,

it is known that the Android permissions system is

implemented irregularly and not sufficiently tested for

vulnerabilities. The application layer is also focused mainly on

the detection of malicious applications, while in the application

markets there are various types of malicious applications.

36

The purpose of this article is to address these security

gaps by analyzing vulnerabilities on mobile platforms and

identifying policy-breaking applications. As a result of our

analysis, we find various vulnerabilities at the level and can run

serious validation concepts on Android platforms. We also

offer mechanisms for detecting policy violation and disguised

applications. It is shown that our methods improve the security

of mobile systems and have several implications for the mobile

industry.

Keywords: applications, system operations, platforms, analysis

of system applications, unsecured receivers.

Introduction

Mobile systems typically consist of three levels

of software: an application layer where third-party applications

are installed, an infrastructure level where application

programming interfaces (APIs) open, and a kernel level where

low-level system operations are performed.

Mobile devices play an important role in modern life,

and there are billions of mobile users worldwide. Platform

providers have a great responsibility to ensure the security and

privacy of mobile users. In this article, we study the security

37

of the application layer and the level of the infrastructure

of mobile systems.

1. Access rights to important resources on mobile
devices

First, platform providers include several security

mechanisms, such as application sandboxes and access control,

at the mobile device platform level. The sandbox engine

isolates code execution and storage of application data on

mobile devices to minimize the damage that can be caused by

malicious applications. At the same time, access control

mechanisms allow applications with the appropriate

permissions to access important resources on mobile devices.

Second, at the application level, platform providers check

applications when they are loaded into application repositories.

Therefore, they remove malicious applications after they are

detected. There are several drawbacks to these mechanisms:

Currently, there is no standard way to analyze

vulnerabilities for Android platforms. The lack of framework-

specific vulnerability analysis tools makes security testing

difficult, which can lead to various vulnerabilities. On the other

hand, securing mobile frameworks is not trivial due to the wide

variety of API types and the extensive presence of the API.

38

Platforms are also constantly being modified by various

platform providers at a very fast pace mobile environment. [1]

Security control in mobile applications has focused

on malware, which accounts for only a small percentage

of mobile applications in the markets.

There has been negligence in dealing with bad

applications that are less aggressive than malware, but still

violate developer policies, such as intellectual property rights

violations. In this article, we take the first step to systematically

analyzing vulnerabilities in mobile environments and discover

policy-breaking applications. We consider a third-party

application as an attacker. This attacker gains access to mobile

resources, bypassing the security mechanisms of the mobile

infrastructure.

The results of these two works are attacks to confirm

concepts that can be performed on mobile platforms. In this

paper, we conduct an empirical analysis of applications that

violate policies, and create detection mechanisms for all

applications that violate Google Play policies. After that, we

will focus on detecting masked applications that are also part of

policy-breaking applications.

39

2. Identify vulnerabilities in the Android Framework

Android requires third-party applications to request

permissions when accessing critical mobile resources, such as

personal user information and system operations. For example,

only applications with Android permission. CAMERA get

access to the cameras of the phone. In this article, we present

attacks that can be launched without permissions. We integrate

the Android APIs into three categories: system services, system

applications, and dynamically register translations.

To identify all the vulnerabilities, we perform

interprocedural analysis of the call graph for system services

and discover all the interfaces of the Android Interface

Definition Language (AIDL), which are not protected by any

authorization checks or Linux ID verification mechanisms.

Then we perform component analysis of system applications

to find unprotected receivers, actions, and services.

After that, we conduct in-process data flow analysis

to detect unprotected dynamically registered broadcast

messages from both system services and system applications.

The result of our analysis is a systematic review

of unsecured Android APIs. These insecure APIs provide

a way to access resources without any permissions.

Then we use the selected unprotected APIs and launch a series

of attacks on Android phones. In particular, we launch attacks

40

using Java reflections, attacks using broadcasts, a hijacking

attack, an attack to launch malicious actions, an activity-

capture attack, an attack to launch malicious services,

and an attack on service seizures. [2]

We find that without requesting any permissions,

an attacker can gain access to the device ID, telephone status,

SIM status, Wi-Fi and network information, as well

as information about user settings, such as the aircraft, location,

NFC, USB and power modes for mobile devices. An attacker

could also disrupt Bluetooth discovery services and block

incoming emails, calendar events and Google documents.

Moreover, an attacker can set the volume of devices and trigger

alarms and ringtones that users personally set for their devices.

An attacker can also launch camera, mail, music, and phone

applications, even when devices are locked.

We compare our study of two versions of Android and find that

as platform providers implement more APIs, the number

of unprotected APIs increases and new attacks become

possible. This is contrary to the popular belief that the security

of the new version should improve, as many of the security

flaws in the old version are reported and corrected.

To ensure the quality and reliability of mobile

applications in the Google Play store, we apply developer

policies covering various aspects, including intellectual

41

property rights, spam and advertising. As soon as the

application reports suspicious behavior that violates the

application’s policies, it is removed from the repository

to protect users.

Currently, the Google Play store uses reviews from

mobile users to identify violations. Our work takes the first

step towards understanding these declared applications by

performing an empirical analysis of real-world application

samples. We scan 302 Android applications that violate the

policies reported on the Reddit forum by mobile users, and

then removed from the Google Play store.

Our empirical analysis shows that many behavioral

disorders have not been well studied by industry or research

communities. We found that 53% of claimed applications

either copy popular applications, or violate copyrights

or trademarks of brands such as Adobe, Disney, Minion,

Despicable and Pikcachu.

In addition, 49% of the applications claimed violate

advertising rules by sending push notifications, adding

a desktop icon and changing browser settings. Many

applications also exhibit behaviors similar to malware, such

as downloading malicious files to users' mobile phones,

redirecting users to other applications on the market,

and accessing PayPal's user accounts.

42

Based on the results of our empirical analysis, we extracted

208 functions that distinguish bad applications from ordinary

applications. Our functions include the use of brand names and

other keywords, third-party libraries, network operations,

metadata, permissions, and suspicious API calls from third-

party libraries.

The first three groups of functions are based on an

empirical analysis of samples of our applications, and the last

three groups of functions are based on their bad behavior.

We applied 10 machine learning classifiers to the extracted

functions to detect declared bad applications. Our experimental

result shows that we can detect them with 86.80% true positive

indicator and 13.6% false negative indicator.

Our work highlights the problem of policy-breaking

applications and suggests revising the current strategy

for maintaining high-quality mobile application markets. [3]

Detection of disguised applications. Application

plagiarism or application cloning is a new threat in the mobile

application markets. This reduces the profits of the original

developers and sometimes even damages the security

and privacy of users.

43

Conclusion

In this article, we present a new concept, called hidden

applications, into which external functions of mobile

applications are copied, such as icons, screenshots, names

or descriptions of applications. We then offer a scalable

detection environment that can find these suspiciously similar

disguised applications.

To do this, we use text-based search methods and image-

based image search methods in our environment.

Our framework is implemented and tested with 30,625 Android

applications from the official Google Play market.

Experimental results show that even the official market

consists of 477 potential victims in disguise, which cover

1.56% of the tested samples. Our work emphasizes that these

disguised applications not only pose potential security threats,

but also degrade the quality of mobile application markets.

Our work also analyzes the behavior of detected masked

applications and calculates the frequency of false positives

of the proposed structure.

44

References

1. Goloshchapov A. A. Google Android: programming

for mobile devices. – SPb, BHV Petersburg 2014, p. 163.

2. Sokolov V.V. Computer equipment and information

technology. Mobile application development. Tutorial.

– M, Yurayt 2016, p.176.

3. Vale E. HTML5. Mobile application development.

– SPb, Peter 2015, p. 225.

